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This paper attempts to trace out the broad characteristics of a class of higher order 
finite difference schemes which are applicable to the solution of parabolic partial differential 
equations associated with viscous fluid flow problems. The basic method developed here uses 
the approach of the compact implicit techniques applied to the full spatial operator. The 
resulting spatial approximation, referred to here as the operator compact implicit method 
can be implemented with a variety of temporal integration schemes. In particular, a simple 
factorization technique is employed to resolve higher space dimension problems in terms 
of simple tridiagonal systems. The operator compact implicit method is compared to 
standard techniques and to some of the newer compact implicit methods. Stability charac- 
teristics, computational efficiency and the results of numerical experiments are discussed. 

1. INTRODUCTION 

The current engineering requirements for providing computational fluid dynamics 
codes for realistic viscous flow problems have provided the impetus for the develop- 
ment and implementation of higher order finite difference techniques [8, 1,241. It has 
been repeatedly demonstrated on model problems, that even the simplest types of 
higher order methods should provide tremendous practical advantages in terms of 
diminishing the required number of points (storage) and also the overall computing 
time for a desired resolution. 

The present effort was undertaken to confront the full range of associated com- 
putational problems that would be involved in practical viscous flow field calculations. 
Our goal was to try to develop a cohesive set of higher order approximation tools 
which would help to indicate what methods ultimately might be best employed to 
form the basis of a major new code. 

It appeared to several people almost simultaneously (sparked by a suggestion of 
Kreiss [17]) that from among the various techniques available a fruitful class of 
methods might emerge from the so-called compact implicit techniques [3], [8], [25]. 
Although there appear to be a variety of forms and implementations, the approaches 
do share some broad characteristics. The higher order is usually sought for the spatial 
part of the differential operator. The method developed is generally required to- 
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1. reduce to tridiagonal form for fourth order accuracy; 

2. allow for nonuniform spatial grids (usually at the expense of one order of 
accuracy); 

3. allow for flexibility in choosing the time step. 

In the various methods developed so far all these conditions have been met for 
simple model problems. However, further important concerns still remain. 

As pointed out by [3, 4, 21 the usual compact implicit techniques, because of their 
implicit complexity, are not generally applicable in a direct manner to problems with 
varying order derivative terms unless a vector unknown of the derivative values is 
considered. Indeed, adopting the factorization technique suggested in [3] for a wave 
equation problem to a model parabolic problem resulted in numerical instabilities. To 
circumvent such problems, we advocate the use of a more general spatial approxima- 
tion method, an operator compact implicit method suggested by Swartz [26]. Essen- 
tially, the same basic ideas are involved and instead of setting up spatial approxima- 
tions for individual derivative terms one now poses the difference approximation in 
terms of the spatial operator. This spatial approximation has been previously derived 
in [20]; however, the basic derivation and implementation there proceeds along lines 
different from those taken here. 

Another serious concern that one has relates to the stability characteristics of the 
overall method. If the spatial operator is associated with implicit temporal schemes, 
as might be expected, a variety of unconditionally stable schemes result for the linear 
model. However, the cell Reynolds number spatial stability characteristics are now 
somewhat more difficult to elucidate for spatially implicit methods. Our analysis in 
section IV is incomplete since it only applies for homogeneous equations with constant 
coefficients. However, our analysis and experiments indicate that for the operator 
compact implicit (OCI) approximation, there is a wider range of admissible cell 
Reynolds number than for the usual compact implicit methods for general homoge- 
neous problems. 

In our numerical studies of nonlinear models we have chosen to use two different 
approaches. As a benchmark, we have taken the basic Crank-Nicolson routine which 
requires linearization or iteration. Our second approach adapts a Lees type method 
[13] which does not require temporal iterations for a nonlinear problem. This latter 
simple scheme has proven to be very effective in numerical experiments. What emerges 
from our investigation is that a promising class of methods can be developed around 
the operator compact implicit method. In the future we hope to resolve questions 
concerning the treatment of mixed spatial derivative terms and to more fully resolve 
the limitations associated with cell Reynolds number effects. 

2. BASIC DIFFERENCE EQUATIONS 

The classical finite difference approach for solving two-point boundary value 
problems of the form 

L(u) = 44 4m + b(x) &c = f, x E P, 11 (2.1) 
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with u(O), u(1) given is to separately substitute standard approximations for the first 
and second derivatives in (2.1) and then solve the resulting system of equations. 
Accordingly, the centered second order approximation for these terms is 

wi = U&l - u,-1 
2h 2h = &Jj + O(h2), 

h2f-Jj = Uj+l - 2Uj + Uj-1 
h2 h2 = (K& + W), 

where Xj = jh, j = 0, l,..., J and Uj N U(xj) and h = 1 /J is the mesh size. 
The resulting system of equations that is derived upon substitution of (2.2), (2.3) 

into (2.1) is tridiagonal, and hence easily solved. For the case of Dirichlet data, there 
is no need to create fictitious points (i.e., to extrapolate information) in order to 
implement the scheme. However, if higher order accuracy is desired, the classical 
approach is to enlarge the basic mesh star, i.e. use more points in the discretization. 
Again, for the centered type of approximation fourth order accuracy is achieved by 
the equations 

Uj-2 - SUj-1 + 8Uj+l - U*+2 
12h 

= Wj + W4), (2.4) 

-Uj-, f 16Uj-1 - 30Uj + 16Uj+l - U.j+2 
12h2 

= (%3Jj + o(h4)* (2.5) 

By substituting (2.4), (2.5) into (2.1) a pentadiagonal system of linear equations is 
obtained, and it is necessary to use fictitious points near both boundaries. 

A different fourth order approximation can be obtained by following a suggestion 
of Kreiss [17]. The resulting representation is of an implicit nature in that there are 
relationships among the function and its derivative at each of three adjacent mesh 
points. Because the method achieves the highest order accuracy possible on the 
smallest star it has been called the compact implicit method. For the derivatives 
considered above, following our notation, one obtains 

[ Zf +q-‘$ uj = (UJj + O(h3 
or 

!$ uj = uj+l & uj-l = [Z I s;2 ] 
(dj + O(h3 

(2.6b) 
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[ 
62 

I++- 1 -l+ uj = (z&)j + O(h4) 
or 

62 y$ uj = uj,,-2Uji-Uj-1 = 
h2 [ 

1 I ~~2 
12 ] LJj + Oth4) 

= t%Ji+1 + l~b)~ + hm!~j-1 + O(h4) 
12 

(2.7a) 

(2.7b) 

Equations (2.6) and (2.7) are derivable by either a Taylor series analysis or a 
Hermite polynomial interpolation or by thinking of (2.4) and (2.5) as Neumann 
series representations (up to fourth order) of (2.6) and (2.7) respectively. These 
formulas had been described in the earlier work of Collatz [6]. As a reference for these 
formulas in the case of an uneven grid, see [l]. 

By substituting (2.6) and (2.7) into (2.1) it becomes apparent that in general it is 
not possible to directly obtain a tractable system of equations in terms of U, alone. 
Indeed, to solve the resulting system one can define new variables Fj - (u& and 
Sj N (u,Ji and develop the following 3 x 3 block tridiagonal system of equations 
approximating (2.1): 

ta> uj+l - uj-l 2h _ F,+1 + 42 + Fj-1 = 0, 

t b) 
Uj+l - 2Uj f Uj-1 

h2 - 
sj+l + losj + sj-I = 0 

12 7 

(C) bjFj + UjSj =& 7 

where bj = b(q) and a$ = a(xj) and the above equations hold for j = 1,2,..., J - 1. 
Alternatively, omitting Sj and using only Uj , Fj , a 2 x 2 block tridiagonal system 
results from using (2.8a) with 

Uj+l - 2Uj + Uj-1 
h2 + & ($ Fj+l + 9 Fj + $ F,-1) 

1 “6+1 / 1% ; 
( 

A-1 =- 
12 Uj+l Uj aj-1 1 

Equations (2.8) and (2.9) require more work to solve them than the second order 
method, but generally the higher order accuracy permits one to solve with considerably 
fewer points to achieve a comparable accuracy. Moreover, for Dirichlet data, no 
fictitious points are needed. Boundary values (j = 0, J) are required for Fj in (2.9) and 
for Fj and Sj in (2.8). These are obtained by either Hamming type formula [21], or a 
Pade type formula [9]. 

These spatial approximation methods have been used by Hirsh 181, Rubin 124,251, 
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and Adam [I] with a resulting block tridiagonal system of equations. Our goal was to 
achieve scalar tridiagonal systems. However it becomes apparent that the use of 
compact implicit schemes with mixed order derivatives will not result in such simple 
systems. (See [5], [8], [l] for details.) However, by using a different approach for the 
spatial operator these goals for parabolic problems are still attainable. Namely, we 
abandon our attempts to represent the separate derivative terms in the spatial operator 
and adopt an approach which looks for a relationship on three adjacent points 
between L(U) and the function U. The resulting fourth order accurate relationship 
may be derived by a Taylor series development and can be represented in the following 
equations (see Appendix A for details). 

qj+(L(u))5+l + q$yL(Q + qi-(L(u))j-, = rj+“j+l + r$lF + rj-“f-l (2.10a) 

or 

q 4x5) = L(U)j + O(h4), (2. lob) 

where the operators Q and R are each tridiagonal displacement operators, namely, 

Qui = qj+Uj+l + qiouj + q~-uj-l~ 
RUj = rj’Uj.+l + rjoUj f rj-Uj-1, 

and where (for simplicity we omit the j index from Q and R) 

(2.lla) 

(2.1 lb) 

qj+ = 6ajaj-1 + h(5aj_lbj - 2ajb+1) - h2bjbj-, , 

qj- = 6ajaj+, - h(kf+lbj - 2ajbj+J - h’bjbj+l , 
(2.12) 

rj+ = h[qj+(%+l + 3hbj+J + qf0(2aj + hbj) + qj-(&-l - hbj-31, 

rj- = $[qi+(Zaj+l + hbj+J + qj0(2aj - hbj) + qj-(2aj-, - 3hbj-I)], 

Yj” = -(rj+ + rj-). 

These relationships were first presented by Swartz [26]. Equation (2.1Oa) retains the 
scalar tridiagonal feature of a second order method while not requiring additional 
fictitious points at the boundary. Note, in the case where either a(x) or b(x) is iden- 
tically zero, with the other coefficient identically a constant, the usual compact 
implicit schemes (either (2.6) or (2.7)) will result. Because of these characteristics we 
have adopted the terminology of referring to (2.10) as the operator compact implicit 
(OCI) method. Note, a formula of structure similar to (2.10) - (2.12) is presented in 
Appendix A for the case of an uneven grid. In that case the method is third order 
accurate. 

At least symbolically, we refer to the inverse of Q. The determination of when Q can 
be inverted is in general a difficult problem. In the case of constant coefficients (a(x) z 
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a = const, b(x) = b = const) the invertibility of Q on 1, can be fully analyzed by 
Fourier analysis [26]. Defining R, = hb/a as the cell Reynolds number, then Q-l 
exists for (see Appendix C for finite dimensional proof) 

R, < (12)‘j2 zt= 3.464. (2.13) 

The invertibility of Q on a finite dimensional space for variable coefficients is harder 
to specify in general. 

As indicated in Appendix A a standard Taylor series analysis of (2.10a) (i.e. setting 
as many lower order derivative terms to zero in the truncation error) results in (2. I l), 
(2.12). This Swartz [26] approximation will be referred to as the standard OCI scheme. 
However, it is possible to generate multi-parameter families of fourth order OCI 
schemes by allowing various lower order derivative terms to appear. In a future paper 
a generalized Taylor series development will be presented to provide a variety of OCI 
schemes. In this paper we are exclusively interested in the full implementation of the 
standard OCI scheme. The investigations here will provide guidelines for our future 
paper on how to best select OCI schemes for wider applicablility and improved 
robustness. 

The above standard OCI scheme can be extracted from the works of [20], [ll] 
where approximation of a parabolic operator was considered. Our approach focuses 
attention on the more general combinations of time dependent methods with OCI 
schemes that are possible. It should also be observed that similar compact implicit 
spatial approximations have been developed under various names, in particular 
Collatz had sometime ago advocated such approaches which he refers to as “mehr- 
stellen” methods [6]. More recently Collatz describes a format for even more general 
operator implicit methods. See Topics in Numerical Analysis, Proceedings of Royal 
Irish Academy Conference on Numerical Analysis, (J. J. H. Miller, Ed.), Academic 
Press, New York, 1972. Several earlier efforts for constant coefficient problems can be 
found in [7], [16]. 

3. THE OPERATOR COMPACT IMPLICIT METHOD 

In this section we consider time integration methods which can be used with the OCI 
spatial approximation for parabolic problems. The method is first developed for a 
one dimensional problem and then by use of a factorization technique multi-dimen- 
sional problems are reduced down to a sequence of one dimensional type problems. 

The methods presented here are unconditionally stable. However, as with most 
other methods for this problem there is a cell Reynolds number condition (2.13). 
The discussion of stability will be reserved for section IV. 

3.1. One-Dimensional Problems 

Consider the equation 

r.+ = a(x, t) u,, + b(x, t) u, = L(u). (3-l) 
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Let n indicate the time dependence in the difference approximation to u at the nth time 
level. 

The first time discretization method considered here is Crank-Nicolson. 

j-J;+1 - Uj” 

At 
= (Q”+l)-1 Rn+‘U;+= + (Q”)-l RnUjn 

2h2 > (3.2) 

which requires that one solve 

[z - X(Q"")-' Rn+l] ujn+l = [Z + h(Q")-' R"] Uj" G Gj”, (3.3) 

where h = At/2h2. (Note well, for simplicity in the presentation of the equations we 
will be redefining X from time to time.) Denote the right-hand side of (3.3) by Gj”; 
then 

[Q ?a+1 _ XRn+l] &?'+l = Qn+lGjn. (3.4) 

Note the following facts about (3.4). 

(1) The matrix represented by Q n+l - AR"+l is tridiagonal, thus very easily solved. 

(2) No fictitious points, or extra boundary conditions are needed after initialization. 

(3) The righthand side Gj” may be computed by the simple recurrence relation 

Gj” = 2Ujn - Gj”-l. (3.5) 

(4) The method is second order accurate in time, fourth order accurate in space, 
and unconditionally stable (see Section 4). 

(5) For constant coefficients the matrix (Q - hR) invertible for h > 0 when 
R, < (12)l12. (See Appendix C.) 

The second method to be considered is adapted from a Lees type scheme [13]. The 
Lees method combined with an operator compact implicit spatial differencing suggests 
the following method, 

uy _ q-1 
2At 

= (Q")-' R"(U;+' + ui" + u,"-') 
3h2 9 (3.6) 

which requires the solution of 

[I - A(Q")-'R"] Up+'= h(Q")-'R"U," + [I + h(Q")-'R"] Ujn-', (3.7) 

where now X = 2At/3h2. Multiply (3.7) by Qn to obtain 

[Q” _ AR"] &?+I = jjRn[Uj" + U,"-'1 + Q"U,"-'. (3.8) 
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As pointed out by the reviewer, a matrix multiplication can be saved by grouping 
(3.8) alternatively as 

[Q" - ARn][Ujn+l - U,“-‘1 = hR”[Uj” + 2U,“-‘1. (3.8’) 

Note the following facts about (3.8), (3.8’). 

(1) The matrix to be solved is tridiagonal. 

(2) No fictitious points or extra boundary conditions are needed. 

(3) The righthand side is easily computed. 

(4) The method is second order accurate in time, fourth order accurate in space, 
and ~nco~ditio~a~~y stable (see Section 4). 

(5) It is necessary to generate Ujl by some other method to begin the computation. 
(6) No iteration is necessary for a nonlinear problem. 

3.2. Two-Dimensional Problems 

We now turn to the consideration of the two dimensional parabolic problem 

where 

4 = L(4 + L(u) Ee W), (3.9) 

L@) = ausz + bu, , (3.1Oa) 

L,(u) = cu,, + du, . (3. lob) 

As pointed out in [5], our factorization technique can not be properly adapted with 
the usual compact implicit method to spatial operators with different order terms. 
Thus, the discussion here is restricted to the implementation of the OCI method. 

For simplicity (3.10) is solved on a rectangular region given by 

{(Xi 2 yk): Xj =jh,;j = 0, l,..., J, JJ~ = khg; k = 0, I,..., K), 

where boundary data is prescribed for all t for j = 0, J and for k = 0, K, and initial 
data is prescribed for t = 0. As in [3] it is possible to directly extend the method 
developed here to rectangular-like L-shaped domains. We shall denote the OCI 
approximations to the operators in (3.1Oa), (3.1Ob) by equations (2.10) - (2.12) 
with subscripts x and y, respectively. 

The methods to be presented are of the AD1 (Alternating Direction Implicit) 
variety and their derivations are similar to those developed in [4] for the treatment of 
the wave equation. 
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Crank-Nicolson Time Discretization 

As before, the first method to be examined uses a Crank-Nicolson time discretization 

u.yjp - u;, _ (Q;+‘)-’ R,“+%J;:l + (en”)-1 Rr’W;k: 
At 2hz2 

+ (Q,“+‘)-’ R;+lU;:l + (Q/-l RunCJ;, 
2hv2 

(3.11) 

As in the one dimensional case where each of the derivatives was represented 
separately, there is no way to “unravel” the different inverse operators in (3.11) 
except by adding to (3.11) the by now familiar second order perturbation cross 
term 

- 7 $ [(PA-’ -f$] [tQ,Y -$] U;, , (3.12) 

where S,+ is the forward difference operator. The resulting equations are easily seen 
to assume the factored form 

[I - h,(Q;“)-’ R,n+‘][I - h,(Q,““)-’ R;+l] U$’ 

= [I + X,(Qc? &“][I + h,(Q,“)-’ &“I U:, , (3.13) 

where X, = At/2hx2 and h, = At/2hu2. 
By introducing an intermediate variable, (3.14) splits into two tridiagonal systems 

[I - X,(Q;“)-’ R,n+‘] Z;;l = G;,k, 

where 

[I - h,(Q,““)-’ R;+‘] U;;l = Z;;l, (3.14b) 

GT,k = [I + UQz”)-’ &“][I + &,(Q,“)-’ Ryn] U;, . (3.15) 

Gy,k is easily computed using previous values by the relationship 

G;rc = W&c - Z;, + UQ,“>-’ RanU;d + G&l. (3.16) 

In order to solve (3.14a), boundary conditions for Zj”,:’ on the x = const. boundaries 
are needed. Likewise, in order to solve (3.14b) boundary conditions for ZEil on the 
y = const. boundaries are needed. These intermediate boundary conditions are 
obtained in the following manner: 

(I) Use one sided differences to compute Zjy:’ at the four corner points. Here, the 
fact that Zz:’ is a fourth order approximation to $$’ - (At/2)(cu,, + c&,)~~~ is 
used. 
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(2) On the x = const. boundaries, (3.14b) is employed to solve for 2::‘: 

Q,“+l.Z;;l = [Q:+l - h,R,"+l] U;;'. 

(3) Now that the x = const. boundary data for .Z::, have been obtained, one can 
proceed with the x sweeps of the AD1 scheme using (3.14a). Included in these sweeps 
are the y = const. boundaries. Thus, the Zz:’ boundary values necessary for the y 
sweeps in (3.14b) are now fully available. 

Lees Time Discretization 

Finally, a method which is a generalization of the one dimensional OCI-Lees 
scheme is examined. Approximate (3. IO) by 

u;:, - u;,, = 
2At [ 

(Qz”)-1 (3.17) 

Again, in order to obtain a factored tridiagonal method one adds the second order 
perturbation term 

- ; At2 [(Qzn)-l +$][(Q,Y +$] 2 u;, 

to obtain 

[I - A,(&“)-’ R,“][Z - A,(Q,“)-’ R,“] U;;’ 

= [L(QzT1 R,” + h(Q,“)-’ &“I Grc 

+ [I + A,(Q,“)-l &“][I + &,(QzlT1 R,‘? U:,‘. (3.18) 

Or alternatively, as pointed out by the reviewer, a more efficient form results from 
solving the left had side for (Cl::’ - U9$) namely, 

[I - A,(Q$-’ R,“][Z - h,(Q,“)-’ R,“][U;:l - U&l] 

= LL(QeT1 R,” + h(Q,“>-’ R,“IW;, + 2U&i11 (3.1%‘) 

Denote the righthand side of (3.18) by Gy,,k , introduce an intermediate value Zjyil, 
and apply our usual splitting to obtain 

[Qr” - h,R,“] Z;;l = QznGb, (3.19a) 

[Q,” - h,R,“] U;;’ = Q,“Z,“.:‘. (3.19b) 

Note the following: 
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(1) There does not appear to be any simple algorithm for computing the righthand 
side. However, upon multiplying GE, by Qzn (as in (3.19a)) it is clear that only a back- 
solve of the tridiagonal matrix Q,* for different righthand sides is required. 

(2) The intermediate boundary condition for Z$l is obtained in the same manner 
as in the Crank-Nicolson case once the Z:jj’ at the four corner points are computed. 

(3) As in the one-dimensional problem an extra plane of information must be 
generated to begin the computation and no iteration is necessary for nonlinear 
problems. 

4. STABILITY CONSIDERATIONS 

In this section we discuss two stability characteristics which enter into the evaluation 
of the usefulness of difference schemes for parabolic equations. At the threshold one 
must consider the Lax-Richtmyer stability of the evolutionary operator [22]. More 
recently, it has come to be appreciated that the stability characteristics associated 
with the spatial operator should be examined [23], [9], [12]. The ability of a spatial 
difference scheme to resolve the spatial variation in a region of sharp gradients 
(boundary layer) often gives rise to a so called cell Reynolds number condition. Here 
we examine these stability questions for the compact implicit schemes previously 
discussed. 

4.1. Temporal Stability Analysis 

For the case of constant coefficients one can analyze the L, stability of the difference 
scheme of interest by Fourier analysis [22]. Here the discussion is limited to OCI 
schemes. Substituting l-J,” = p&eijs into (3.2) yields 

PCN = 
2 + W@ 

- 2 - Al(B) ’ 

where 

- 
Z(O) 24(cos 0 1) + iR,(12 

- 
R,2) sin 0 = 3a 30 - 2Rc2 + (6 - Rc2) cos 8 + i 3R, sin 0 ’ 

(4.lb) 

The term l(0) is associated with the Fourier transform of the spatial operator 
alone [26]. For stability it is required that 1 P& / < 1. Imposing this condition 
directly on (4.1) yields, Re l(0) < 0 as a necessary and sufficient condition for stability. 
This latter condition requires that 

24(cos 6 - 1)[30 - 2Rc2 + (6 - Rc2) cos 01 + (12 - R,2) 3Rc2 sin2 B < 0. 

Collecting terms and factoring out a (cos 0 - 1) term yields 

(COS e - 1)[720 - 84R,2 + 3R,4 f COS e(i44 - 60Rc2 + 3R:)J G 0 (4.2) 
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Regrouping, and noting from (2.13) that the region of interest is Rc2 < 12, yields 

(cos 8 - 1)[12(12 - R,2) + 12(12 - R,2 cos 0) + 288 + (144 - 72Rc2 + 3Rc4) 

x (cos 8 + l)] < 0. (4.3) 

To see that this inequality is always satisfied for Rc2 < 12, note that the term in the 
left parentheses is GO and the term in the bracket is the sum of four terms, the first 
three of which are clearly nonnegative. The last term in the bracket takes on a negative 
minimum at Rc2 = 12 and even when cos 0 = 1 this minimum is just the negative of 
the third term. This establishes that / pCN I < 1 for Rc2 < 12, and the unconditional 
temporal stability of OCI-CN. The two space dimension case follows directly. 

To see that OCI-Lees is similarly stable, substitute U,” = pLneije into (3.6) to obtain 
a quadratic for pL , 

p,“+HK+ QpL+K=O (4.4) 

where K = PcN as in (4.1) above (with X replaced by #A). Since the OCI-CN method is 
unconditionally stable, clearly in the range of R c2 < 12, 1 K j < 1. The stability of the 
OCI-Lees method is now contained in the statement of the following lemma 

LEMMA. For the roots pL of (4.4) 

IPLI G1 iff IRl <l. 

ProojI First we prove the lemma for the case of equality in both inequalities. 
Say K = ei* then solve for pL directly as pL = pei*i2 where p = e*i&, cos ($/2) = 
-2 cos 4. Clearly such # exists and thus 1 pL 1 = I p / = 1. On the other side, if 
1 pL I = 1, say pL = ei*/2, then soving for K yields 

K = _ 1 t 2eib12 
1 + &-i&P ’ 

Thus / K I = 1. This completes the proof that 1 pL / = 1 iff / K I = 1. To show that 
I pL / < 1 iff ] K I < 1 examine the variation of the roots pL with respect to the unit 
circle as K varies from 0 to + co. At K = 0, pL = 0, -4, both roots are inside the 
unit circle. Now by a connectivity argument, and the fact that the pL roots depend 
continuously on the coefficient K [18], varying K such that / K I < 1 then the cor- 
responding roots pL must remain strictly inside the unit circle. Indeed, if some root 
“touched” the unit circle, i.e., I pL I = 1, then by our proof above I K I = 1. This 
argument demonstrates that for I K / < 1, I pL I < 1. Conversely at K = + co both 
pL roots are outside the unit circle thus, again by a connectivity argument the pL must 
remain outside the unit circle for all K such that I K I > 1. 

Finally the stability of the two dimensional Lees-OCI method is established using 
the above Lemma. Substituting Ut, = pnei(je+kd) into (3.19) one obtains 

p2 + H1 - y% p - 4 = 0, (4.5) 
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where a = (1 + X&Q/(1 - &J(O)), /? = (1 + h,Z(~))/(l - A&)), and where I(O) 
and I(#) are defined by (4.1 b) for x and y, respectively. Noting that 01, j3 are each 
separately in the form of a p cN as found above, one concludes from the above lemma, 
that in the range I R,” 1 < (12)1/2, 1 R,” 1 < (12)lj2 (i.e., where the cell Reynolds 
number invertibility condition is satisfied for each spatial operator) 1 01 j < 1, / p / < 1. 
Now identifying K = -a/I in (4.5) clearly our above Lemma implies j p 1 < 1. 

4.2. Spatial Stability 

Experience with computations involving diffusion convection equations has long 
shown that nonphysical oscillations will appear in the computed solution when the 
spatial mesh size is not sufficiently small [23], [9], [12]. Here we use the standard 
linear analysis to attempt to predict some of the cell Reynolds number limitations 
associated with the methods discussed in this paper. Through-out this subsection, for 
discussion purposes, we will consider the following model “boundary layer” problem 

au,, - bu, = 0, a, b positive constants 

u(0) = 0, U(1) = 1 

where in general b/a is large. Note, the solution of (4.6) is 

(4.6) 

u(x,-) = cl + c2eb”” = cl + c2eRci, xj = j Ax. (4.7) 

Operator Compact Implicit 

The spatial stability analysis for this method is quite straightforward and provides 
a practical guide for the range of usefulness of the scheme. Assuming Q-lRUj = 0 is 
applied to (4.6) then one is to consider the three point homogeneous difference 
equation 

RUj = 0. (4.8) 

Substituting a solution of the form Uj = ~5 into (4.8) (using (2.11 b)) leads to the 
general difference solution 

Uj = Cl + C2jAi; 
24 + R,(12 - R,2) 

’ = 24 - R,(12 - Rc2) ’ 

Three cases are possible for general R, : 

1. R, < (12)lj2, p > 1. The difference solution is monotone increasing, concave up, 
and properly approximates the true solution 

2. (12)1’2 < R, < 4.207607 (R, value where numerator of p vanishes), 0 < ~1 < 1. 
The difference solution is monotone increasing but concave down and completely 
wrong. 

3. R, > 4.207607, - 1 < p < 0. The difference solution is oscillatory. 
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In summary, the spatial modal analysis, of essentially the operator R indicates that 
the cell Reynolds number R, should be restricted to the exact same condition used for 
the invertibility of Q, i.e. R, < (12)‘/“. This represents no additional limitation on 
how one would prudently employ the OCI method. 

Compact Implicit-Block Methods 

To check the spatial stability of any of the block tridiagonal compact implicit 
methods it is sufficient to consider any one of them since each method (either the 
2 x 2, or the 3 x 3) has the same set of characteristic roots. Thus, the fundamental 
modes of the system can be obtained by taking a solution of (2.8a, c) for (4.6) in the 
form 

(Z) =pq;;j, j=O,l,..., J. (4.10) 

A nontrivial solution results if the determinantal equation 

(CL - I)[(4 - R,)p3 + (12 - ~IRJcL~ - (12 + llR,) p - (4 + &)I = 0 (4.11) 

holds. A study of (4.11) will at least provide an indication of what types of non- 
physical results are possible. However, there are four roots (and corresponding 
arbitrary constants) to contend with now. A proper analysis involves consideration 
of the particular schemes used to approximate the required derivatives at the bound- 
aries. Here we present a qualitative analysis of the possible numerical solutions of 
(4.6) aIong with some illustrative computational experiments. 

For our model example (4.6) one would like to obtain a Uj which is monotone, or 
at least, does not have large oscillatory modes which are dominant. Generally, this is 
accomplished by restricting R, so that if Re p < 0 then j p 1 < 1. However, a simple 
inspection of the bracketed cubic in (4.11) at E.L = - 1, 0, 1 reveals that such a condi- 
tion can not be found, since there are (for R, < 4) always three real roots of (4.1 I), 
CL+ , p- , pLo such that 

p+ > 1, p- < -1, -1 < po < 0. 

Thus the block tridiagonal schemes for (4.6) do not satisfy what has been generally 
considered a reasonable stability requirement. Yet the schemes are useful in practice; 
see Section 5. The reason why the oscillatory modes do not even appear in some 
calculations, let alone dominate them, is tied to a consideration of the way the coeffi- 
cients are determined by the boundary conditions. 

A series of numerical experiments was made for (4.6) and qualitatively we can 
conclude the following. In the range of R, values (0 < R, < 4/(15)112 = 1.0328) where 
p+ < 1 EL... / no dominant oscillations occur. While in the range 4/(15)112 < R, < 
2.14383 corresponding to the p+ range 1 p 1 < p+ < e Rc the negative oscillations tend 
to affect more of the region. For p+ > e Rc the oscillations are apparent in most of the 
region. Typical results are presented for R, = 1 .O, I .5, 2.0, 2.4 in Tables 4. I, 4.2. 



OPERATOR COMPACT IMPLICIT METHOD 149 

TABLE 4.1 

Compact Implicit (2 x 2) Block Tridiagonal Solution of (4.6) 

R, = 1.0, b/a = 30 R, = 1.5, b/a = 45 

j u, u(x3 i uj UC4 

1 0. 

2 .16513E-12 

3 .61378E-12 

4 .1833OE-11 

5 .51414E-11 

6 .14134E-10 

7 .38533E-10 

8 .10486E-09 

9 .2848OE-09 

10 .77395E-09 

11 .2101OE-08 

12 .57087E-08 

13 .15495E-07 

14 .42104E-07 

15 .11428E-06 

16 .31053E-06 

17 .84279E-06 

18 .22903E-05 

19 .62155E-05 

20 .16892E-04 

21 .45839E-04 

22 .12458E-03 

23 .33806E-03 

24 .91885E-03 

25 .24931 E-02 

26 .67769E-02 

27 .18386E-01 

28 .49982E-01 

29 .1356OE+OO 

30 .36864E+OO 

31 .lOOOOE+Ol 

0. 

.16079E-12 

.59786E- 12 

.1786OE-11 

.50155E-11 

.13794E-10 

.37658E- 10 

.10253E-09 

.27885E-09 

.75816E-09 

.20611 E-08 

.56027E-08 

.1523OE-07 

.41399E-07 

.11254E-06 

.30590E-06 

.83153E-06 

.22603E-05 

.61442E-05 

.16702E-04 

.454oOE-04 

.12341E-03 

.33546E-03 

.91188E-03 

.24788E-02 

.67379E-02 

.18316E-01 

.49787E-01 

.13534E+OO 

.36788E+OO 

.lOOOOE+Ol 

1 0. 

2 .26899E-13 

3 -.50788E-13 

4 .14292E-12 

5 -.33484E--12 

6 .84259E-12 

7 -.20584E- 11 

8 .50913E-11 

9 --.1252OE-10 

10 .30904E-10 

11 -.75975E-10 

12 .18793E-09 

13 -.45992E-09 

14 .11474E-08 

15 -.27645E-08 

16 .70919E-08 

17 --.16225E-07 

18 .45561E-07 

19 -.87359E-07 

20 .32645E-06 

21 -.30805E-06 

22 .29748E-05 

23 .2561 lE-05 

24 .37845E-04 

25 .10386E-03 

26 .62403E-03 

27 .23905E-02 

28 .11645E-01 

29 .49587E-01 

30 .22727E+OO 

31 .lOOOOE+Ol 

0. 

.99664E-19 

.54633E--18 

.25481E-17 

.1152OE-16 

.51727E-16 

.23192E-15 

.10395E- 14 

.46589E-14 

.2088OE-13 

.93576E--13 

.41938E-12 

.18795E-11 

.84235E-11 

.37751E-10 

.16919E-09 

.75826E-09 

.33983E-08 

.1523OE-07 

.68256E-07 

.3059OE-06 

.13730E-05 

.61442E-05 

.27536E-04 

.12341E-03 

.55308E-03 

.24788E-02 

.lllWE-01 

.49787E-01 

.22313E+OO 

.lOOOOE+01 

58x/28/2-2 
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TABLE 4.2 

Compact Implicit (2 x 2) Block Tridiagonal Solution of (4.6) 

R, = 2.0,b/a = 60 R, = 2.4,bja = 72 
-..~ 

i uj 4%) i uj u(xj) 

1 0. 

2 .40527E- 11 

3 -.60778E--11 

4 .16219E-10 

5 -.32360E-10 

6 .73391E-10 

7 -.1568OE-09 

8 .34427E-09 

9 -.74643E-09 

10 .16277E-08 

11 -.35401B-08 

12 .77089E-08 

13 -.16777E-07 

14 .36522E-07 

15 -.79496E-07 

16 .17304E-06 

17 -.37667E-06 

18 .81991E-06 

19 -.17847E-05 

20 .3885lE-05 

21 -.84541E-05 

22 .18423E--04 

23 -.39949E-04 

24 .88083E-04 

2.5 -.18344E-03 

26 .46035E-03 

27 -.55256E-03 

28 .451286-02 

29 .14551E-01 

30 .14782E+OO 

31 .1OOOOE+Ol 

0. 

.55946E-25 

.46933E-24 

.35239E-23 

.26094E-22 

.19287E-21 

.14252E-20 

.10531E-19 

.7781 M-19 

.574956-18 

.42484E- 17 

.31391E-16 

.23195E-15 

.171396--34 

.12664E-13 

.93576E-13 

.69144E-12 

.51091E-11 

.377516-10 

.27895E-09 

.20612E-08 

.1523OE-07 

.11254E-06 

.83153E-06 

.61442E-05 

.454oOE-04 

.335466-03 

.24788E-02 

.18316E-01 

.13534E+OO 

.1OOOOE+01 

1 0. 

2 .103966-09 

3 -.13186E-09 

4 .34476E-09 

5 -.60936E-09 

6 .12990E-08 

7 -.25178E-08 

8 .51159E-08 

9 -.101526-07 

10 .20383E-07 

11 -.40686E-07 

12 .81453E-07 

13 -.16283E-06 

14 .32573E-06 

15 -.65138E-06 

16 .13028E-05 

17 -.26056E-05 

18 .52113E-05 

19 -.10423E-04 

20 .20845E-04 

21 -.4169OE-04 

22 .83381E-04 

23 -.166766-03 

24 .33357E-03 

25 -.66651E-03 

26 .13401E-02 

27 -.26014E-02 

28 .60827E-02 

29 -.23290E-02 

30 .11462E+OO 

31 .lOOOOE+Ol 

0. 

.53927E-30 

.64837E-29 

.7201OE-28 

.79432E-27 

.875656-26 

.96525E-25 

.1064OE-23 

.11729E-22 

.12929E-21 

.14252E-20 

.15710E-19 

.17317E-18 

.19089E-17 

.21042E-16 

.23195E-15 

.25569E- 14 

.28185E-13 

.31068E--12 

.34247E-11 

.37751E-10 

.41614E-09 

.458726-08 

.50565E-07 

.55739E-06 

.614426-05 

.67729E-04 

.74659E-03 

.82297E-02 

.90718E-01 

.1OOOOE+01 
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The case R, = 2.4 is particularly interesting because here p- = -2 and the I*- 
term is the dominant term in the solution in the interior part of region as is apparent by 
observing that the ratio of successive terms is -2. 

Since the circumstances where these spatial oscillations will dominate (they are 
always present for constant coefficients) is not easily anticipated, one should be aware 
of this potential problem for the block compact implicit methods. 

5. NUMERICAL EXPERIMENTS 

5.1. Introduction 

In this section results of numerical experiments conducted with the various schemes 
that were discussed in Sections 2 and 3 are presented. These calculations were per- 
formed in order to determine the viability of the OCI method for solving parabolic 
problems, to understand its characteristics and limitations, and to compare its 
performance with classical second order techniques as well as to other fourth order 
approaches. 

One of our major concerns is the efficiency of the various schemes, i.e. computation 
time required to obtain a given accuracy. Obviously this is machine as well as pro- 
grammer dependent. In order not to bias any of the techniques care was taken to 
program the algorithms in an efficient and consistent manner. The computing times 
that are given include time for: matrix setups, inversions, boundary condition evalua- 
tions and (for nonlinear problems) iteration procedures. All results were computed 
on the NSWC/WOL CDC 6500 computer. 

The operation count estimates (multiplications and divisions) for the block tri- 
diagonal inversion algorithm is given in [lo] as 

ops = (3n - 2)(m3 + m’) (5.1) 

where m is the order of the block and n is the number of equations. This estimate 
assumes full blocks. However, if the specific values of the elements of the blocks are 
taken into account, e.g., zeros and ones, the actual operation count can be greatly 
reduced. Such modified algorithms were used to obtain the reported results. 

A comparison of operation counts for the various inversion procedures (assuming 
full blocks) and the modified algorithms are presented in Table 5.1. Also included 
there are the matrix setup operation counts. Note that for the block methods the 
inversion of the matrix is the dominant factor in the running time, while for the OCI 
technique the matrix setup accounts for most of the time, 

For completeness the operation count estimates for the explicit pentadiagonal 
method are also included (although no calculations were performed with it). The low 
operation count is offset by the need for extrapolation formulas near both boundaries. 
The unfavorable spatial stability characteristics of the block methods (four roots) 
are also possessed by this method. 
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TABLE 5.1 

Matrix Setup and Inversion Operationsa Uniform Mesh 

Matrix 

Inversion Total 
setup + actual 

Estimated” Actual Setup inversion 

Scalar tridiagonal (OCI-CN) 5N-4 5N-4 22N - 22 27N - 26 
2 x 2 Block tridiagonal (C-N) 36N - 24 27N-60 8N+ 16 35N - 44 

3 x 3 Block tridiagonal (CN) 108N - 72 49N - 62 4Nf24 53N - 38 

Scalar pentadiagonal 11N - 16 1ON” 21N-16 

a Here it is assumed that multiplications and divisions are equivalent. However, on certain machines 
this may not be true; e.g., on the CDC 6600 a division is comparable to six multiplications. The 
operation counts would have to be changed accordingly for the methods. 

* Reference [lo]. 
c Does not include operation counts for extrapolation formulas for points adjacent to the 

boundaries. 

5.2. Linear Parabolic Equation 

The first numerical experiment involved the solution of a one dimensional linear 
parabolic partial differential equation with variable coefficients 

ut = 4x, t> u,, + b(x, t) u, ; t>O;O<x<l, (5.2a) 

where 

b(x t) = 1 cx + ‘1 , 23727’ 

with the exact solution 

u(x, t) = u,(x, t) = exp[(x + Nt + 91. (5.2b) 

Initial and boundary conditions are given by 

4-G 0) = %?(x, 01, 

40, t) = d4 0; u(1, t) = z&,(1, t). 
(5.2~) 

This example was constructed in order to test the stability and convergence proper- 
ties of the methods under consideration for a variable coefficient problem. Results are 
shown in Table 5.2 and Fig. 1. All the methods tested were stable and show the 
predicted convergence rates. Crank-Nicolson temporal integration was used for all 
the schemes. 
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TABLE 5.2 

Linear Variable Coefficient Parabolic Equation 

ut = 4x, thz, + b(x, t>uz 
u = exp{(x + l)(t + 2)) 

Method 

Second order 
Crank-Nicolson 

Time steps Computing time” 
iv (At = 0.ooo1) I,,, Error L, Rate (=4 

100 2000 0.20 * IO-04 35.5 
160 2000 0.79 * IO-05 1.98 
200 2000 0.51 IO-05 1.96 

55.4 
* 68.8 

400 2000 0.13 * 10-06 1.97 135.5 

3 x 3 block 5 2000 0.15 * 10-04 
Crank-Nicolson 10 2000 0.90 10-06 4.06 

12.2 
* 17.7 

20 2c00 0.51 * 10-07 4.14 30.4 
40 2000 0.20 * 10-08 4.67 58.5 

2 x 2block 5 2000 0.83 * lo-O5 7.4 
Crank-Nicolson 10 2000 6.70 * lo-O6 3.58 11.9 

20 2000 0.48 * 10-O’ 3.87 20.8 
40 2000 0.20 * 10-06 4.59 40.2 

Operator compact 5 2000 0.24 * lo-O4 5.4 
implicit Crank- 10 2000 0.15 * 10-05 4.00 
Nicolson 20 2000 0.94 * 10-O’ 4.00 

8.8 
15.6 

40 2000 0.41 * 10-08 4.52 30.0 

n Computation times are for a CDC 6500. 

TIME (SECONDS) 

FIG. 1. Linear variable coefficient equation. L, Error vs running time. 
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Of basic interest is the savings that can be obtained in storage and computational 
time. As noted in Table 5.2 and Fig. 1 the OCI technique compares favorably with 
the other methods tested. This is not wholly unexpected, since the block methods 
require additional work to compute the first and/or second derivatives. 

It is also important to note the differences in the computed L, errors of the fourth 
order methods. These result from several factors among which are the local truncation 
error and boundary conditions. The spatial truncation errors, which are dominant 
for the case considered, are given below. 

Compact Implicit-(Block Methods) 

First derivative: 

-h4 
Ef=mu (5) + O(h’). 

Second derivative: 

-h4 
Es = 240 - u16) + O(h’). 

Thus for Eq. (2.1) with a and b constant the local spatial truncation error at point j 
would be 

E = -h4 
( 
&, ujs) + & ,,)j. 

OCI 

Specializing Eq. (A16) for constant coefficients yields 

E = --A4 -!t &) + 3b u!5) 
200 3 200 3 

(5.3) 

(5.4) 

In achieving a scalar tridiagonal system, the OCI technique leads to an unsymmetric 
difference formula and thus has a larger local truncation error than the block methods 
that were derived from symmetric formulations. Were it not for the different boundary 
conditions, Pade relations for the 3 x 3 block method and a Hamming type formula 
for the 2 x 2 block method (see [5] for details), both block techniques would give 
identical errors. 

5.2.1. General boundary conditions. The OCl method can also be applied to problems 
with more general boundary conditions of the form 

Au, + Bu = g. (5.5) 

A linear fourth order accurate expression is sought relating U, at the boundary with 
u and L(u) at points j = 0, 1, 2, i.e., 

F,, = (u&, = H&o + HIU, + 4 U, + Gob + G,fi + Gzh > (5.6) 
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the coefficients in (5.6) can be evaluated. These coefficients and the truncation error 
are given in Appendix B. As an example, Eq. (52a) was solved with the boundary 
conditions: 

x = 0, 24 + 21% = u,(O) + @4,(O) = (t + 3) exp[t + 21, 
x= 1, u = u,(l) = exp[2(t + 2)]. 

TABLE 5.3 

Linear Variable Coefficient Parabolic Equation 

ut = a@, t>u,, + b(x, t)uz 
I( = u. = exp(x + l)(t + 2) 

u(O) + u,(O) = (t + 1) explt + 21, u(l) = k(l) 
OCI - 2000 Time steps 

N r, Error 

5 0.222 * IO-02 

10 0.122 10-0s * 

20 0.737 * 10-05 

40 0.441 * 10-06 

a Computation times for a CDC 6500. 

Le Rate 

4.796 

4.049 

4.063 

Computing time” 
(se4 

6.51 

9.58 

16.71 

30.42 

Table 5.3 shows the L, errors and L, rates of convergence for different mesh 
widths. Comparisons with the results in Table 5.2 indicate that for general boundary 
conditions the L, error is larger and the computation time is increased. 

5.3. Burgers Equation 

In order to test the various methods for a nonlinear problem that is indicative of 
viscous flows the one dimensional Burgers equation was investigated. Consider 

ut = -(a - 01)u, + vu,,. (5.7) 

With the exact steady state solution given by 

U,(X) = 01{1 - tanh(cux/2v)}. (5.8) 

Near x = 0, U(X) exhibits large gradients, and as v -+ 0, a steep shock wave forms. The 
ability to resolve this flow field would demonstrate the viability of the various methods. 

Solutions were obtained in the domain -5 < x < 5 with (y. = 3 and for various 
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values of v, and with the exact values of u(x) specified at the boundaries. The initial 
conditions employed for all cases are 

u(x, 0) = 0.5, 

/ 

1, -5<X<O, 

x = 0, 

0, o<x<5. 

Results of computations with the OCI (Crank-Nicolson and Lees) methods and 
the second order Crank-Nicolson finite difference scheme are presented in Tables 
5.4-5.7 and Fig. 2. 

Since Eq. (5.5) is nonlinear, a linearization such as proposed by McDonald and 
Briley [14] or iteration is necessary for the Crank-Nicolson temporal discretization. 
Here, we adapt the OCI method with successive approximation for the nonlinear 
term, UU, , i.e., 

U,““( U,),“” = u*j( uJ;+l, (5.9) 

where Uj* is the latest iterant value. This procedure converges linearly. 
The second order finite difference scheme uses a different type of linearization, viz. 

(uj _ ay+l/2 (uaj;+l’2 = (‘i 
n+1/2 _ a) ,rJn+1 _ uy1 

2 1 3+12dx 3 l + uc12-&u,“_1 1, (5.1Oa) 

where Uj.J+112 is replaced by 
w*i + U,“)P, (5. lob) 

TABLE 5.4 

Steady State Solution of Burgers Equation: 
Second Order Crank-Nicolson 

Y N h = Ax vAt/hz Max error Lz Error L, Rate 

0.500 50 0.20 
100 0.10 
200 0.05 

0.250 50 0.20 
100 0.10 
200 0.05 

0.125 50 0.20 
100 0.10 
200 0.05 

0.062 50 0.20 
100 0.10 
200 0.05 

0.031 100 0.10 
200 0.05 

6.25 
25.00 

100.00 

3.125 
12.50 
50.00 

1.5625 
6.25 

25.00 

0.775 
3.100 

12.40 

1.55 
6.20 

0.633 * 1O-s 0.125 * 1O-2 
0.158 * 10-a 0.311 * 10-a 

2.007 

0.395 * 10-4 0.778 
1.999 

* 1OP 

0.303 * 10-Z 0.442 * lO+ 
0.747 * 10-s 0.109 * 10-a 

2.020 

0.186 * 10-a 0.273 * 1O-3 
1.997 

0.128 * 10-l 0.131 * 10-l 
0.303 10-S 0.314 10-z 

2.061 
* * 

0.749 
2.019 

* 10-a 0.775 * 10-s 

0.694 t 10-l 0.473 * 10-I 
0.130 10-l 0.940 10-a 2.331 * * 

0.308 * 1OV 0.224 
2.069 

* 1OP 

0.694 + 10-l 0.334 * 10-l 
0.130 * lo-8 0.665 * lo-% 2.328 
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TABLE 5.5 

Steady State Solution of Burgers Equation: 
OCI Crank-Nicolson and Lees 

Y N h = Ax vAt/ha Max error Lz Error La Rate 

0.500 10 1.00 0.25 0.132 * 1O-2 0.231 * 1O-2 
20 0.50 2.00 0.796 * 1O-4 0.137 * 10-a 
50 0.20 6.25 0.205 * 1O-5 0.348 t 1O-5 

loo 0.10 25.00 0.128 * 10-6 0.216 * 1O-6 

4.076 
4.028 
3.985 

0.250 10 1.00 0.125 0.189 * 10-l 0.267 * 10-l 
20 0.50 0.500 0.126 * lo-* 0.153 * 10-a 
50 0.20 3.125 0.312 * 1O-4 0.370 * IO-” 

loo 0.10 12.500 0.194 * 10-S 0.230 * 1O-5 

4.125 
4.062 
4.008 

0.125 20 0.5 0.250 0.187 * 10-l 0.188 * 10-l 
50 0.20 1.563 0.466 * 10-a 0.431 * 10-a 

loo 0.10 6.250 0.312 * 1O-4 0.261 * 1O-4 

4.120 
4.046 

0.062 50 0.20 0.388 0.868 * 10-Z 
100 0.10 3.100 0.484 * lo-$ 

0.554 * 10-e 
0.313 * 10-s 

4.145 

0.031 60 0.167 0.558 0.598 * 10-l 0.346 * 10-l 
loo 0.10 1.550 0.868 * 10-a 0.392 * IO-2 4.263 

TABLE 5.6 

Steady State Solution of Burgers Equation; 
Comparison of U Profiles 

(v = 0.500) 

X 
Exact 

u 

OCI-CN 
Second order CN 

N= 10 N = 20 N= 100 N=200 

-5.00 0.993307 0.993307 0.993307 0.993307 0.993307 

-4.00 0.982014 0.982042 0.982015 0.982014 0.982021 

-3.00 0.952574 0.952845 0.952589 0.952574 0.952595 

-2.00 0.880797 0.881716 0.880850 0.880797 0.880833 

-1.00 0.731059 0.732380 0.731138 0.73 1059 0.73 1094 

-0.40 0.598688 0.598688 0.598705 

-0.20 0.549834 0.549834 0.549842 

-0.00 0.5OOOOO 0.5OOOOO 0.5OOOOO 0.5OOOOO 0.500000 
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TABLE 5.7 

Steady State Solution of Burgers Equation 
Comparison of U Profiles 

Y = 0.031 

X 
Exact 

u 

OCI-CN 
Second order CN 

N=60 N= 100 N=200 

-1.200 1.oooooO 
-1.167 1.OOOOOO 

-1.000 1.OOOOOO 

-0.833 0.999999 

-0.800 0.999998 

-0.667 0.999979 

-0,600 0.999937 

-0.500 0.999086 

-0.400 0.998425 

-0.333 0.995397 

-0.200 0.961794 

-0.167 0.936325 

0.000 0.50OOoO 

0.167 0.063675 

0.200 0.038206 

0.333 0.004603 

0.400 0.001575 

0.500 0.000314 

0.600 0.000063 

0.667 0.000021 

0.800 0.000002 

0.833 O.OOOOOl 

1.000 O.OOOOOO 

1.167 0.000000 

1.200 O.OOOOOO 

0.999997 

0.999990 

0.999963 

0.999894 

0.999651 

0.998843 

0.996115 

0.5OOOOO 

0.003885 

0.001157 

0.000349 

0.000106 

O.COOO32 

0.000010 

o.OOOOO3 

l.OOOOOO 1.OOOOOO 

1.000000 1.OOOOOO 

0.999995 1.OOOOOO 

0.999903 1.OOOOOO 

0.998091 0.999981 

0.962779 0.994937 

0.5OOOOO 0.5OOOOO 

0.037221 0.005062 

0.001909 

0.000097 

O.OOOOO5 

O.OOOOOO 

O.OOOOOO 

0.000019 

O.OOOOOO 

O.OOOOOO 

O.OOOOOO 

O.OOOOOO 

U*j being the last iterate. This form of iteration has super-linear convergence proper- 
ties [19]. 

Both methods assume an initial guess for Ujn+’ = Uj” which is used to solve the 
resultant tridiagonal system of equations. Iteration is employed until the difference 
between successive iterants is less than some preset tolerance. The steady state is 
assumed when differences in solution values at two time steps is less than some 
predetermined value. 
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1000 I I I / 

v- 0.250 

1c -OCIFOURTHOROER 
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:06 
I I !  I 

lC5 104 llT3 l(r2 101 
L2 ERROR 

FIG. 2. Steady state Burgers equation. L, Error vs number of intervals. 

In contrast to the above procedure, the OCI-Lees discretization does not require 
iteration and generally approached the steady state in about the same number of time 
steps as the OCI-CN method. 

Figure 2 presents a graph of the computed L, error versus the number of intervals, 
for the fourth order and second order schemes. The storage savings possible with the 
OCI method are readily evident from the figure. Tables 5.6 and 5.7 compare solution 
values obtained from the fourth order and second order methods with the exact 
value, for two cases, v = 0.5 and v = 0.031. 

Although the cell Reynolds number analysis for the OCI method given in Section 4 
was derived for a linear spatial operator, this theory can be useful in predicting the 
behavior for nonlinear time dependent problems. For the Burgers equation it was 
found that physical solutions were obtained for a steady state only when j R, jmax -=c 
2.55, where 

1 R, Imax = (’ - a1 A = ; . 
V 

However, a careful inspection of the numerical results indicates that for j R, jmax > 
2.55, in computing the transient solution, values are encountered which yield cell 
Reynolds numbers exceeding (12)lj2, and physical steady state solutions cannot be 
obtained. These results suggest that when the homogeneous case maintains, one should 
monitor the evolution of the local cell Reynolds number and consider modifying 
the spatial mesh when necessary. 

The results of the computations presented above suggest that the OCI method can 
be adapted to handle nonlinearities with very little additional effort and can resolve 
regions with sharp gradients. 

5.4. Two Dimensional Problems 

The OCI method was tested for a two dimensional parabolic equation 

ut = 4x, y, t> u,, + b(x, y, t> u, + 4x, Y, 0 u,, + 4x, Y, t) u, , 
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whose coefficients were constructed in order to obtain the solution 

46 Y, f) = ev{(x + ~XY + I>0 + 1)). 

Neither efficiency studies nor comparisons with other methods were made. The aim 
here was mainly to check the order of accuracy and the viability of the AD1 formula- 
tion. Table 5.8 demonstrates that the splitting technique given in Section 3 yields 
fourth order accuracy. Ciment and Leventhal [3] have demonstrated that for hyper- 
bolic equations this type of AD1 scheme retains fourth order accuracy on other than 
rectangular domains, e.g., L shaped domains. Similar results are expected for para- 
bolic equations. 

TABLE 5.8 

TWO Dimensional Parabolic Equation: OCI-Crank-Nicolson 
Ut = a(-? Y, fhz + b(x, Y, t)u, + 4x, y, t)u,, + 4x, y, t>u, 

4.~ Y, 0 = ew{(x + 00, + I)0 + 1)) 
Domain is square Q = [& Q X, y < 11, dx = dy = h 

Time 
steps h At Lz Error Lz Rate 

Max 
relative 

error 

Max 
relative 

rate 

5 0.1 0.1 3.235 - 03 - 
20 0.05 0.025 1.517 - 04 4.414 

1.544 04 
1.031 0.5 3.905 - 

80 0.025 0.00625 4.890 - 06 4.955 6.549 - 07 3.977 

10 0.1 0.1 3.903 - 02 3.909 - 04 
40 0.05 0.025 1.896 03 4.364 - 

4.909 
2.559 05 3.933 - 

160 0.025 0.00625 6.311 3.982 - 05 1.619 - 06 

APPENDIX A 

The Swartz operator compact implicit formulas are derived here for uniform and 
nonuniform grids, with their associated truncation errors. 

Given the spatial operator 

L(u) = 4&!, + AWN, , 

a linear relationship between u and Lu at xj is sought in the form 

(Al) 

r-u- + rouo + r+u+ = q-L(u)- + qOL(u), + q+L(u)+ W) 

where as shorthand notation the subscripts -, 0, + are used for j - 1, j, and j + 1, 
respectively, and thej dependence of the coefficients is not indicated, see (2.12). 

The function values U- and U+ and the spatial operators L(u)- and L(u)+ can be 
obtained through Taylor’s series expansion about the point j. 
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= b-2.4;) + (a- - h-b-) up 
- h- (u- - + b-) up + g (CL - + b-) up 

h-3 -- 
3! ( 

a- - + b-) up + $ (a - $ b-) 242’ .**, (A3c) 

L(u)+ = a,?.$) + b+l$) 

= b+@ + (a, + h+b+) z$’ 

+ h, (u+ + 2 b+) up’ + +f (u+ + + b+) ut’ 

+~(u++~b+)u~)+~(u+++b+)+~, (A34 

where superscripts in parenthesis indicate derivatives and h, = X~+~ - xi and h- = 
xj - x&q . Multiplying (A3a) - (A3d) by a, fi, y, 6, respectively, and collecting 
terms the following relation is obtained. 

&U+ f /AL + yL(u)- + SL(u)+ = (a + 8) ug + IQ) + aup + cuy + IQ) 

i- Truncation Error (A4) 
or 

au+ - (a + /3) ug + flu- = --y&L(u)- - &L(u), + Aup + Buy + cup + Du!’ 

+ Truncation Error, (A5) 

where, in order to obtain (A2) directly from (AS) 

B = ah, - ph- + yb- + 66, = b, , 

+ ~(a- - h-b-) + @a+ + h+b+) = a, , 

-olh,3 flh-3 
c= 3! -3!- yh- (au - + be) + ah+ (a+ + 2 b+) = 0, 

646) 

- ++@Lt - ah 4 
I)- 4! 

6h 2 
4! 

+ rh-2 
2 ( a- - + b- 

) 
+ -2’- (a+ + 2 b+) = 0. 
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2 = c&3, p =p, p = y.9, 8 = 69, (A7) 

where C@ is the determinant of (A6), 

9 = {12au7+@+3 + 4h+V- + 4h+k2 + hm3) - 2~z+b-h-(3h+~ + 7h+2h- 

+ 5h+k2 + h-3) + 2a-b+h+(h+” + 5h+2h- + 7h+k2 + 3k3) 

- h+h-b+b-(h, + h-)3}. 

Then the variables a2, fi, p and 8 are given by 

p = {12h,.a+ao(h+2 - h+h- - h-2) 

$ 2~+b,h+~h-(3h+ + 2/k) + 2~,,b+h+~(h+~ - h+h- - 2k2) 

+ h+3h-b,b+(h+ + u:, (A9) 

8 = {12U,U~h~(k2 - h+k - h+2) + 2u,b-h-2(2h+2 + h+h- - k2) 

- 2u-b,h+h_2(2h+ + 3k) + b&h+h3(h+ + A-)), (AlO) 

jk(h+ + k) = zB[2u,, - h+b,] - 8[2u+ + h+b+] - ?[2u- - b-(2k + A,)], (All) 

Gz+(h+ + he) = zB[2u, + h-b,] - 8[2u+ + b+(2h+ + I’-)] - P[2u- - h-b-]. (A12) 

Multiplying thru by 9, the q’s and Y’S become 

q- = 9, q+ = 8, qo = -9, 

r- = -/z?, r” = (G + P>, y+ = -&I , 

such that the operators Q and R are given in the form 

Q = 8S+ - BI + $S- , 

R=-&S++(&+fl)I-/k, 

(Al3) 

(A14) 

where S is the shift operator. 
Using the relations (A7) - (A12) the truncation error given by 

is seen to be third order accurate for small h. 
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For a uniform mesh, h, = h- = h, the truncation error reduces to 

ET = 1*(J;+a-H9w-n+l up + [4a,a-b, - 35a_u+b, $ 4u,a+b-] uf’}, (A16) 

which is fourth order accurate. 
Note that in Eq. (2.12), common factors in the q’s and r’s have been canceled (in- 

volving constant h), so that (2.12) differs from (A13) by a multiplicative constant, 2h3. 
In a future paper it will be shown how a family of OCI schemes can be obtained by 

expanding 01, /3, y and 6 in an asymptotic series in powers of h and retaining lower 
order derivative terms in the truncation error while still achieving fourth order 
accuracy. 

APPENDIX B 

The coefficients of (5.6), namely, 

F,, = &Jo = HJJ, + HI U, + H&J, + Gofo + GA i 

are derived. 
Consider the compact implicit formulas 

F,, + 4F1 + Fit = ; (U, - Uo), 

so + 10% + s, = ; (Uo - 2u, + m 

So + 4% + S, = ;(Fz - Fo), 

and the differential equation at points j = 0, 1,2 expressed as 

UjSj + biF$ = 5. 9 j=o,1,2 (u&j # 0). 

GA, (Bl) 

@W 

Wb) 

0324 

033) 

Equations (B2)-(B3) form a system of six equations in nine unknowns, and thus F. 
can be determined as a function of u,, , u1 , u2 , f. , fi , and fi . 

The coefficients in (Bl) are listed below. 
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The truncation error is given by 

E TRUNC = ~-(4~-lO~)E,+[4~($-~+;) 

- ($ + ;)(4 $ - 10 +)] EF + 4 ($ - $- + ;) ET), 

where 

Es = 5 $ zP, EF = & u(5), ET zz & ~(‘3. 

Equation (B5) can be specialized for constant coefficients 

E =ltUNC = (b,a:5180 
[(5 $ + ;) u(6) + (5 + ;) u(5)]. 

(B4) 

036) 

In the case of time dependent problems modifications to (Bl) are necessary. Con- 
sider the one dimensional parabolic equation 

ut=L(u)-aS+bF=J: (B7) 

The first derivative at an end point at time level (n + 1) in the form of 

F;+l = H;+lU;+l + H;tlU;+l + H;tlU;+l 

+ G,“tlf,“+tl + G;+lf;+l + G,“+lf;tl w9 

is sought. 
Again, as before,use the compact implicit formulas(B2), but with u, F, and S evaluated 

at time level (n + 1). The differential equation (B7), however, is discretized temporally 
by a Crank-Nicolson scheme to yield 
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Thusf appearing in (B8) is the spatial operator evaluated at (n + 1) and is given by 

2 fj”“’ z ,;+lsjn+l + b;+l + dt u, n+1 - (J;” + $ ujq. WO) 

Hence, substituting (BlO) into (B8), the desired relationship is obtained: 

Fc? = [ Hi’+’ + & Go”“] U;+’ + [HP+’ + & G;+l] UT+’ 

+ [,+’ + & G;“] U;+l + G;+l [h” + & uo”] 

+ G:+l [h” + $ UT] + G;+l [fen + & U2”]. WI) 

The local spatial truncation error remains unchanged. 

APPENDIX C 

Here we prove the invertibility of S = (Q - AR), h > 0 for the case of constant 
coefficients. Let s+,O*- = q+*Os- - Xr +*O,-. Let dJ = det S (J x J matrix). Expanding 
by minors, since S is tridiagonal di = s”djml - s+s-dje2, j = 2, 3,v.e J. Where 
dl = so, do = 1. Observe from (2.12) that for R, < 121/2, so > 0. Thus if s+s- 6 0 
the dj are a strictly (nondecreasing) positive sequence. The only case that needs 
further consideration is when s+s- > 0. In this case sign s+ = sign s- which implies 
that (by direct substitution from (2.12)) 

1 s+ 1 + 1 s- j = / s+ + s- 1 = 1 (12 - R,2) - Rc2 - 144h 1 

< 12 + 144h <so. 

In this case S is an irreducibly diagonally dominant matrix and hence invertible 
[18]. The authors thank Charles R. Johnson for the suggestion to expand out the 
above determinant and to consider the sign pattern. 
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